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Curves of Constant Precession 

Paul D. ScolJleld 

1. INTRODUCTION. Given initial position and direction, the flight-path of a ship 
in Euclidean space is completely determined by how much it turns and how much 
it twists at each odometer reading. This is an intuitive interpretation of the 
Fundamental Theorem for Space Curves, which states that curvature K and torsion 
, as functions of arclength s, determine a space curve uniquely up to rigid motion. 
This statement of the Fundamental Theorem ([14], §1-8) should be tempered with 
the reservations expressed by Nomizu [12] and Wong & Lai [15]. 

Given a parametric space curve, there are well-known formulae for the arc- 
length, curvature, and torsion (as functions of the parameter). Given two functions 
of one parameter (potentially curvature and torsion parametrized by arc-length) 
one might like to find a parametrized space curve for which the two functions are 
the curvature and torsion. This activity, called "solving natural equations" ([14], 
§1-10), is generally achieved by solving Riccati equations like dw/ds = -iz/2 - 
iKW + i7W /2. 

Although the solution generally exists, it usually cannot be obtained explicitly. 
Euler [6] found explicit integral formulae for plane curves (where z - O) through 
direct geometric analysis. Hoppe [9] developed a general method for solving the 
natural equations for space curves by solving Riccati equations through a compli- 
cated sequence of integral transformations. He digressed to obtain formulae for 
the tangent, normal, and binormal indicatrices for general helices and essentially 
for curves of constant precession. Enneper [5] obtained explicit closed-form 
solutions for helices on revolved conic sections through direct geometric analysis. 

A curve of constant precession is defined by the property that as the curve is 
traversed with unit speed, its centrode revolves about a fixed axis with constant 
angle and constant speed. In this paper we obtain an arclength-parametrized 
closed-form solution of the natural equations for curves of constant precession 
through direct geometric analysis. As part of this analysis, we obtain a new 
theorem for curves of constant precession analogous with Lancret's Theorem for 
general helices. We provide the first rendering of a curve of constant precession. 
We also note for the first time that curves of constant precession lie on circular 
hyperboloids of one sheet and have closure conditions that are simply related to 
their arclength, curvature, and torsion. These are 3-type curves, except one family 
of closed 2-type curves (when Z = 4,u; see [2], [3], and [1]). 

Given a closed C3 curve in space, it is rather obvious that the curvature and 
torsion functions will be periodic functions of the arclength, with period equal the 
total arclength. This is a necessary condition but, as the circular helices (K and z 
both constant) show, not a sufficient condition that integral curves be closed. 
Efimov [4] and Fenchel [7] independently formulated 

The Closed Curve Problem. Find (explicit) necessary and sufficient conditions that 
determine when, given two periodic functions K(S) and z(s) with the same period L, 
the integral curve is closed. 
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This natural problem in elementary differential geometry remains open, despite 
implicit solutions by Schmeidler [13] and Hwang [10]. Fenchel warned that there 
may be no simple solution. Our investigation of curves of constant precession 
began in an effort to find closure conditions for some collection of pairs of simple 
periodic functions like K(S) = @ cos ,u s and z(s) = Z sin ,u s. 

2. PLANE CURVES. Here we set out Euler's well-known integral solutions of the 
natural equations for plane curves ([14], p. 26). We will designate coordinates and 
geometric invariants of plane curves by subscript w. Identifying the angle between 
the tangent line to the curve and the x-axis as 

(Pzr = IK zr ds zr v 

it follows that 

Xzr = | COS 9zr dsr and YZr = | sin ,r dsr 

solve natural equations of the form 

K zr = KV ( ST ) and ,r - ° 

If we change a constant of integration, we rotate or translate the curve. 
Still, it is a rare curve for which both K iS a simple function and the above 

integrals can be evaluated in closed form with elementary functions. Among the 
simplest are the circle, the logarithmic spiral, the circle involute, and the epicycloid 
([14], pp. 26-28). Enneper [5] showed that each of these is the projection along the 
axis of symmetry of a curve of constant slope (helix) on a conic surface of 
revolution: a circular cylinder, a cone, a paraboloid, and a sphere. 

3. CURVES OF CONSTANT SLOPE ("FIICES). Here we set out the integral 
solution of the natural equations for curves of constant slope or general helices 
([14], pp. 33-35), and we set out an explicit parametrization for spherical helices, 
never appealing to the solution of a Riccati equation. A curve of constant slope or 
heliJc is defined by the property that the tangent makes a constant angle 0 with a 
fixed line 1. We have its natural equations by 

The Theorem of Lancret [11]. A necessary and sufficient condition that a curve be 
of constant slope is that the ratio of curvature to torsion be constant. 

In proving the theorem, it is observed that the constant slope and the constant 
ratio are related by 

K/T = tan 0, constant. 

Taking I as the z-axis, it is easy to observe that dz = cos 0 ds. Moreover, the 
projection of the curve onto the xy-plane has arclength element dsr - sin 0 ds and 
curvature K r = K csc2 0 (relating the radii of a helical osculating circle and the 
planar osculating circle of its projection). Then using Euler's planar solution, 

(Pzr = |K r dsr = csc 0|K ds, 
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so 

x(s)=sinOlcoscsc0| K(s2)ds2 dsl 
o o 

y( s) = sin 0| sin csc 0| K( s2) ds2 dsl 
o o 

z(s) = scos0. 

General helices are precisely the geodesics on general cylinders generated by lines 
parallel with 1. A general cylinder is the rectifying developable of its helices. 

We will want a parametrization for spherical helices because the tangent 
indicatrix of a curve of constant precession will prove to be a spherical helix. In 
anticipation, we will designate the coordinates and arclength of spherical helices by 
subscript t. Struik ([14], pp. 34-35) shows that for a helix on a sphere of radius r 
making an angle 0 with the z-axis, the projection onto the xy-plane is an 
epicycloid with fixed radius a = r cos 0 and rolling radius b = r sin2 (0/2). Substi- 
tuting these into his epicycloid parametrization (p. 27), we obtain 

r r 1 +cosO 
Xt(ffs) = 2 (1 + cos 0)cos d' - 2 (1 - cos 0)cos 1 0 d' 

r r 1 +cosO 
Yt(+) = 2 (1 + cos 0)sin d' - 2 (1 - cos 0)sin 1 0 d' 

cos 0 

zt(t) = rsinOcos 1 - cos' 

where 
cos 0 

sv = r sin 0 tan 0 cos 1 - cos 0 0 

cos 0 

st = r tan 0 cos 1 0 + 

The spherical helix has an arc of length 2r tan 0 between heights z = + r sin 0 
beyond which no tangent to the sphere makes an angle as small as 0 with the 
z-axis. The parametric extension gives a sequence of arcs which join in cusps at 
their endpoints. This piecewise smooth curve is closed if and only if cosO is 
rational. All arcs of a spherical helix with cos 0 = 8/17 are rendered in Figure 1. 

4. CURVES OF CONSTANT PRECESSION. Here we characterize curves of 
constant precession. We will denote the moving orthonormal frame of tangent, 
normal, and binormal vectors by t, n, and b, and we will differentiate with respect 
to arclength, using the Frenet equations 

t'= Kn 

n' = - Kt + Tb 
b' = -Tn 

([8], [14], §1-6). Let C = Tt + Kb denote the centrode, the Frenet frame's axis of 
instantaneous rotation ([14], §1-6, Exercise 18, and [7]). Fix arbitrary constants 
Z > 0, ,u, and cx = A/02 + 2. Set A = C + yn and fix the line I parallel with 
A(0). We use Z (, *) to denote the angle between two vectors. 
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Figure 1. SLxteen arcs of a helux on the unit sphere with cos @ = 8/17. They form the tangent indicatrix 
of the cuIve in Figure 2. (Visualization assisted by The Geometry Center at the University of 
Minnesota.) 

Lemma. The following are equivalent: 
(i) I C I = cl) 

(ii) Z (C, A) = cos-1- 

(iii) I n' I = co 

(iv) Z (n, A) = cos- 1 _ 

(v) gAt = a. 

Proof: Since ICl2 = K2 + T2 = gn'12 and IAl2 = K2 + 2 + y2, it is clear that (i), 
(iii) and (v) are equivalent. Interpreting (ii) as 

K + T2 = C * A = -vK2 + T2 vK2 + 2 + 2 a 
implies that (i) is equivalent to (ii), and interpreting (iv) as 

,u = n * A =-lnl tA a 
implies that (iv) is equivalent to (v). Q.E.D. 

Lfemma. Given any of (i)-(v), the following are equivalent: 
(vi) [C'l = 1@y1 

(vii) A is parallel with 1. 
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Proof: Since A' = C' + ,u n', 

A' = O C' = +,un' IC'l = ljul lntl 

Thus, it follows from (iii) and (v) that (vi) and (vii) are equivalent. Q.E.D. 

A curve of constant precession is defined (somewhat redundantly) by the 
property that, as it is traversed with unit speed, its centrode revolves about a fixed 
line I in space (the axis) with constant angle and constant speed. As a conse- 
quence, its Frenet frame precesses about 1, while its principal normal revolves 
about I with constant complementary angle and constant speed. We have its 
natural equations by the following analogy with Lancret's Theorem. 

Theorem 1. A necessary and sufficient condition that a curve be of constant 
precession is that K(S) = (I) sin jus and z(s) = Z cos jus, up to reflection or phase 
shift of arclength, for constants Z and ,u. 

Proof: Conditions (v) and (vii) are true if and only if A' = 0, but 
A = ( T - ,UK)t + ( K + RT)b 

and uniqueness of solutions of pairs of linear equations imply that A' = 0 if and 
only if K(S) = Q) sin,us and z(s) = Z cos jus (up to reflection or phase shift). 
Q.E.D. 

5. SOLVING THE NATURAL EQUATIONS. Here, without solving a Riccati 
equation but using results from Sections 3 and 4, we obtain an arclength 
parametrization for curves of constant precession. Condition (iv) of the lemmata in 
Section 4 implies, since t' = Kn that t iS a curve of constant slope (hence a helix on 
the unit sphere). We take K = +(X) sin ,us and continue to designate the tangent 
indicatrix by subscript t. Arclength along the curve and along its tangent indicatrix 
are related by 

dSt 
=K = +@sln/1S, ds 

so 

st = + cos ys + C. 

Taking the lower signs, C = 0, and cx = IAI = W@2 + 2, while substituting r = 1 
and cos 0 = ,u /oe into the formula for st in Section 3, we obtain 

st= cos + 
y oe-y 

hence 

s= , 
oe-y 

giving a remarkably simple reparametrization 
oe + y a-y 

x'(s) = Xt(S) = 2 cos(ot-R)s- 2 cos(ot + ,u)s 
oe + ,u oe-y 

y (s) =Yt(s) = 2 sin(ot - R)s - 2 sin(ot + ,u)s 

z'(s) = Zt(S) = -COS yS. 
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Figure 2. A curve of constant precession with co = 15 and y = 8, shown on its circular hyperboloid. It 
is an integral curve of the indicatrix in Figure 1. 
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(p. 530) 

Carl Ludwig Siegel cind Grahame Segal. 
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